Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.

نویسندگان

  • Li-Xin Guo
  • Rui Li
  • Ming Zhang
چکیده

PURPOSE This study is to reveal the deformation of intervertebral disc (IVD), the stress distribution of solid phase and liquid phase, the variation of fluid flux and flow velocity in lumbar spine and the influence of different permeability parameters on them under intermittent compressive loading. METHODS A poroelastic FEM of L4-L5 is assigned with different permeability parameters to analyze the deformation, stress distribution and fluid convection under intermittent compressive loads. RESULTS The results show that the pore pressure of IVD decreases with time, but the effective stress increases under intermittent compressive loads. The axial and radial strain will increase and fluid loss will recover at a more rapid rate if the permeability of endplate increases during unloading period. The velocity vectors show that most of the liquid in the disc flows into vertebrae through endplates and only a small quantity of liquid flows through the annulus fibrosus at the loading step, however, at the unloading step, almost all the liquid flowing into IVD is through the endplates. CONCLUSIONS The changing rate of pore pressure and effective stresses of nucleus pulposus and annulus fibrosus with higher permeability is smaller than that with smaller permeability. The degenerated endplate (with low permeability) yields high flow velocity decreasing gradient, which might impede liquid inflowing/outflowing smoothly through the endplates. The fluid flowing velocity in loading phase is faster than that in unloading phase, so a short resting time can relieve fatigue, but could not recover to the original liquid condition in IVDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Axisymmetric Poroelastic FE Modeling of Intervertebral Disc for Investigation of Lumbar Spine Biomechanics

Prediction of the relationship between different types of mechanical loading and the failure of the intervertebral disc is so important to identify the risk factors which are difficult to study in vivo and in vitro. On the basis of finite element methods some of these issues may be overcome enabling more detailed assessment of the biomechanical behavior of the intervertebral disc. The objective...

متن کامل

A Finite Element Study of the effects of Vibrational Loading on the Fluid Flow Mechanism of the Intervertebral Disc

Low back pain is a clinical and public health problem affecting more than half of the population. Disc degeneration is a major source of low back pain. Long-term exposure to whole body vibration or sedentary work postures may have high association with disc degeneration. It is hypothesized that there is a preferential frequency for vibrational loading, which may increase the efficiency for flui...

متن کامل

Effects of resting modes on human lumbar spines with different levels of degenerated intervertebral discs: a finite element investigation

BACKGROUND The negative effect of long-term working load on lumbar is widely known. However, insertion of different resting modes on long-term working load, and its effects on the lumbar spine is rarely studied. The purpose of this study was to investigate the biomechanical responses of lumbar spine with different levels of degenerated intervertebral discs under different working-resting modes....

متن کامل

Effects of Intervertebral Disc Degeneration on Biomechanical Behavior of the L4-L5 Lumbar Functional Spinal Unit

The consideration of biomechanical alterations due to intervertebral disc (IVD) degeneration is crucial for the accurate analysis of spine biomechanics. In this study, finite element (FE) models of the L4-L5 functional spinal unit with full coverage of the degeneration grades from healthy IVD to severe degeneration were developed. The effects of IVD degeneration on spine biomechanics were analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta of bioengineering and biomechanics

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2016